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LIQUID CRYSTALS, 1989, VOL. 5, No. 3, 847-851 

Electro-optic effects in blue phases 

by V. E. DMITRIENKO 
All-Union Surface and Vacuum Research Centre, 117334 Moscow, U.S.S.R. 

A theory of electro-optic and elasto-optic effects in the blue phases of cholesteric 
liquid crystals is developed. The case of small structure deformations and a weak 
field is considered: ]El < E,, where E, is the critical field for the cholesteric-nematic 
transition. The theory explains all of the main experimental facts: the field-induced 
birefringence and biaxiality, the distortion of the cubic structure (electrostriction) 
and the orientation of the blue phase monocrystals in an electric field. 

1. Introduction 
The structure of the blue phases (BPs) of cholesteric liquid crystals is now well 

understood [ 1-41 (except for the fog phase, BP 111) whereas studies of their physical 
properties are still in their initial stage. Two of the BPs (BPI and BP 11) have a 
periodic structure of the liquid-crystalline order parameter with cubic symmetry. The 
most probable space groups are I 4,32 for BPI and P 4,32 for BPII; the lattice 
constants are about equal to the cholesteric pitch ( 10’-lo4 A). At macroscopic dis- 
tances the BPs have crystalline properties (their elastic moduli were measured in [5] 
and calculated in [6]; the faceting of BP monocrystals was observed in [4, 71). At 
microscopic distances (much smaller than the lattice constant) the BPs look like an 
anisotropic liquid. The distribution of nematic-like order parameter of this anisotropic 
liquid inside the unit cell can be calculated from the Landau theory of phase tran- 
sitions [l-31. It is clear that the macroscopic properties of BPs are determined by the 
microscopic structure of the order parameter. In this paper the electro-optic and 
elasto-optic properties of BPs are discussed. Our theoretical results are compared with 
the observed field-induced effects in BPs such as the orientation of monocrystals 
[4, 71, the shifts of the Bragg reflections [4, 8, 91 and the birefringence [4, 10-121. 

The influence of an electric field on the BPs is mainly connected with the dis- 
tortions of the cubic double-twist structure. These distortions are analogous to the 
well-understood deformation of the cholesteric helix in external fields; their theoreti- 
cal description can be obtained from the Landau theory [13]. However, in this 
approach the simple models of distortions were considered because of computational 
difficulties. In this paper a phenomenological approach is developed using the weak- 
field and small-strain expansion of the free energy ([El 4 EL,  I u , ~  I 6 1, where E, is the 
critical field for unwinding the cholesteric helix [14] and U , ~  is the strain tensor). 

2. Phenomenological description 
The free energy expansion is [ 151 

1 
16n - Xiklm Ei Ek Em - 

1 
Piklm Ei Ek ulm 

where summation over repeated indices is implied. The tensor coefficients 1, f and i, 
are called the elastic constant tensor, the tensor of non-linear dielectric susceptibility 

0267-8292/89 $3.00 0 1989 Taylor & Francis Ltd 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
0
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



848 V. E. Dmitrienko 

and the elasto-optic tensor, respectively. The dependence of the dielectric susceptibility 
on E and u , ~  may be obtained from equation (1) as 

AEd = X r h l r i .  E,Eni + PiklniUIni. (2) 

The field-induced strain u i  of free crystals is 

where the tensor 1 is reciprocal to 2; so 

~ i k / m i ~ / w m y  = (dm 6 , p  + d i p  d k n  )/2. 

The tensor R is called the electrostriction coeficient (8 x E, '). 
The deformation of the crystal lattice leads to changes of the reciprocal lattice 

vectors T (AT, = - u;tr) and, hence, to shifts of the Bragg reflections. It should be 
noted that the electric field contributes to the energy of liquid crystals only in the 
combination zzE2, where xz is the anisotropy of the molecular polarizability. 
Therefore, the coefficient fi in equation (1) should be proportional to xa. The same 
result is also obvious from equation (2) directly: if the deformation ulm is fixed (that 
is, the average molecular configuration is fixed), the sign of the deformation-induced 
A C , ~  is determined by the sign of the molecular dielectric anisotropy. These simple 
arguments explain the different signs of the shifts of the same reflections in the BPs 
with different signs of x1 [4, 8, 91. 

Substituting equation (3) into equations (2) and (1) we obtain the dielectric 
susceptibility and the free energy as functions of E: 

A 4  = X:E?lEIEml, (4) 

where 

1 
87c x:!% = Xiklni + - P i h q ,  LyqrnpP/mnp 

Because of the cubic symmetry of BPs (the crystal class 432), each of the tensors 1, 
f and $ can contain three independent constants; however, we can restrict the number 
of the constants using the liquid-crystalline nature of the BPs. For example, in the case 
of weak fields and small strains, the main contribution to A E , ~  results from the 
reorientation of molecules; hence, the average dielectric constant should be unchanged 
(As,, = 0). Thus, = 0, plllnl = 0 and each tensor contains only two independent 
constants. As a result uz = 0 and the volume of the BP unit cell remains unchanged 
(in E 2  approximation only). Note that the tensor i ,  used in the previous work 
[7, 13, 161, does not satisfy the condition xrl lm = 0 because in these papers only part 
of the tensor 2 (symmetrical over all indices) was considered. 

3. Calculation of tensor coefficients 
To obtain the explicit form of the tensors 2, 2 and @, we explore the Landau 

theory (in the limit of weak fields and small strains). Being averaged over the unit 
cell, the Landau-de Gennes free energy [l-31 should give equation ( 1 )  where the 
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Electro-optic efects in blue phases 849 

tensors f ,  i and fi should be some functionals of the order parameter of the undis- 
torted BP structure. As the order parameter i(r), we shall use the traceless part of the 
local dielectric susceptibility [l-31. It is known that the dominant contribution to the 
Fourier harmonics of i(r) is from the plane mode (rn = 2 term) [l-4,  13 ,  171 (only 
these terms with amplitudes ~ ( r ,  2) will now be taken into account). 

Rewriting equation ( 1 )  via the explicit small parameter (EIE,), we can see that the 
new expansion coefficients ( f , i E ;  and BE:) are of the same dimension (dyn cm-2) and 
of the same order of magnitude: f x iE:  x fiE: x K2qi, where K2 is the Frank 
constant [14], qo = 2n/p0, po being the undistorted cholesteric pitch. Near the tran- 
sition to isotropic liquid (where BPs exist), K2 is of the order of c , P ,  where c, is 
the elastic constant in the Landau theory [l-31. Thus, we can search for the tensors 
1, jiE; and fiE2 as quadratic functionals of i(r) (and of its derivatives). The tensor 
functionals of i(r) with proper dimension have two forms: cI (d&,/dxk)(d&lm/dx,) and 
cI qOe,k&lm(de,/dx,) (the overscores denote an average over the unit cell). These high 
rank tensor functionals should be convolved over some pairs of indices and then 
symmetrized to obtain the fourth-rank tensors with 432 symmetry [ 151. 

The tensor functionals contribute to f ,  ae and fiE: with independent numerical 
coefficients, which are the same both for BPs and for the cholesteric phase because 
equation ( 1 )  for all phases results from the Landau-de Gennes free energy (different 
phases have different sets of E(Z, 2)). Thus, we can determine most of the numerical 
coefficients requiring the validity of the functionals for f ,  iE," and fiE,' in the case of 
cholesterics. We note that in cholesterics the tensor f has only one non-zero 
component: 

(the z axis is along the helix axis). Tensors fi and i can be evaluated from the 
de Gennes-Meyer theory of cholesteric distortion [ 141 in the E2 approximation: 
piklm = 0 because the field-induced changes of the pitch are of the order of E4 and the 
E2 term is absent; then 

- 
x x x x x  = x y y y y  = Xxyxy - x y x y x  = xyxxy = x x y y x  

- - -xxxyy = - x ~ ~ ~ ~  = (n5/256)Ec4c, C 2)12 
7 

and for the rest Xjklm = 0. 
Taking into account all of these restrictions we can obtain for BPs: 

x i k l m  = ( n 5 / 7 6 8 ) K 4 c ~  1 r21E(T, 2 ) 1 2 ( 3 T k l m  + Bi18km -k 6k16im - bik61m), (6b)  
r 

P i k l m  = BclEF2 z(z - 240)&ml&(r, 2 ) 1 2 ,  (6 c> 
7 

where 

T k l m  = zjzkz/zm/z4 

and B is the numerical coefficient remaining undetermined by this procedure. Note 
that equation (6 a) for f is slightly different from that derived in [6] by another method 
(the bulk moduli given by both expressions are equal). It should also be emphasized 
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850 V. E. Dmitrienko 

that equation (6 h)  is not applied to cholesterics because in its calculation the cubic 
symmetry of BPs has been used. 

4. Discussion 
We can compare equations (6) quantitatively with the available experimental 

results because thc values of I E ( z ,  2)Iz havc been determined both thcorctically and 
experimentally [2-4, 171. Let us discuss first the temperature and pitch dependence of 
1, i and 8. The temperature dependence is due mainly to the temperature dependence 
of E ,  where E is the typical value of the order parameter (E' zz C,/E(Z, 2)12). Taking into 
account that 

EL' x q;K2/& x c ,q ic ,  

we can obtain 

1 x clq:,c', x ((.,y$'. j.i x E 

R zz (C,q;e)-I. 

and 

Note that f is independent of temperature and R increases with increasing 
temperature; the last is in  accord with experiment [8]. 

To discuss the field-induced shifts of the Bragg reflections we suppose that in 
equation ( 6 ~ )  B > 0. It follows from equations (3) and (6) that the I10 reflection in 
BPI and the 100 reflection in BPI1 have red (blue) shifts if  xz > 0 (x, < O), and 
the 200 reflection in BPI is shifted in the direction opposite to 110 (the field is 
assumed to be parallel to the reflections). In BPI the ratio of the shifts is given 
by ( A ~ / t ) , , , , / ( A z / t ) ~ , ~ "  E - 0.6, in close agreement with cxperimental results [8]. 
Equations (3) and (6) may be also used for the quantitative description of the Kossel 
diagram distortions observed in an electric field [ 181. Note that due to the coefficient 
(z - 2q) in equation (6c), the electrostriction effects should be small in any phases 
where T 1: 2q, for all harmonics with large ~ ( t ,  2); this result is also evident from a 
sum rule [2].  Indeed, a very small ficld-induced shift is observed in BPI11 where 
T N 2q, [19]. 

The field-induced dielectric tensor (equation (4)) contains two contributions: 
the first from the non-linear susceptibility 2 and the second from electrostriction. 
These contributions can be measured separately because of their different response 
times: t, 2 10-4s and rp 2 10pzs [9-121. It is rather difficult to estimate the second 
contribution quantitatively because the absolute value of B is unknown. However, 
this contribution seems to be small compared with the first one because 
(t ~ 2q0)' < T~ for harmonics with large E ( Z ,  2). It should be emphasized that 
equations (4) and (6) describe the birefringence induced both parallel and perpen- 
dicular to the field direction (numerical calculations have been made for the latter case 
only [13]). For example, if E /I [ I  101, all characteristic values of AtE are different 
and, neglecting electrostriction, we obtain froin equations (4) and (6) that 
(At$, : ) : (AEFiio) % 1 : (- 0.73) : (- 0.27) (orientation [ 1 101 11 E can be stabilized 
by wall anchoring). If the strain u , ~  is caused by external mechanical distortion and 
E = 0, equations (2) and (6) describe the elasto-optic effects. 

The stable orientation of free BP monocrystals is that which minimizes the free 
energy (equation ( 5 ) )  [7, 161. The relevant part of x;;irn has the form AX:= Inyn",yn: [7], 
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Electro-optic ejects in blue phases 851 

where nz (a = 1,2,  3) are unit vectors parallel to the four-fold cubic axes. Neglecting 
again the electrostriction contribution to 2'"' we obtain for A 

where for the strongest harmonics C(100) = C(200) = 2, C(110) = - 1 ,  C(211) = 

- 2. Thus, the { 100) and (200) harmonics are favourable for the orientation [IOO] I /  E 
(A > 0), whereas the (1 lo} and (211) harmonics are favourable for the orientation 
[ I  1 I ]  1 1  E ( A  < 0). Using experimental (or theoretical) values of ile(z, 2)12, we obtain 
both for BPI and for BP I1 that A > 0 and the orientation [loo] / I  E should be stable, 
in agreement with observations [7]. In the I432 phase, where the ( 1 10) harmonics are 
dominant, the orientation [ I  1 1 1  I /  E should be stable in accord with numerical results 

So far we have not distinguished between the values of the dielectric anisotropy 
for the different frequencies of the electric fields and those of the light beams; the 
generalization to the case of different values and to magnetic fields are trivial. Note, 
in conclusion, that the flexoelectric effects are also possible in BPs due to the presence 
of gradients of the order parameter. The spontaneous polarization is allowed by 
symmetry at any points of the unit cell except those with 23 or 432 point symmetry 
(certainly, the average spontaneous polarization should be zero for the 432 crystal 
class). The presence of spontaneous polarization may be very important for the 
electro-optical properties of BPs. 

~131. 

The author is grateful to V. A. Belyakov for helpful discussions 
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